
iGniter: Interference-Aware GPU Resource
Provisioning for Predictable DNN

Inference in the Cloud

Fei Xu ,Member, IEEE, Jianian Xu, Jiabin Chen, Li Chen ,Member, IEEE, Ruitao Shang,

Zhi Zhou ,Member, IEEE, and Fangming Liu , Senior Member, IEEE

Abstract—GPUs are essential to accelerating the latency-sensitive deep neural network (DNN) inference workloads in cloud

datacenters. To fully utilize GPU resources, spatial sharing of GPUs among co-located DNN inference workloads becomes increasingly

compelling. However, GPU sharing inevitably brings severe performance interference among co-located inference workloads, as

motivated by an empirical measurement study of DNN inference on EC2 GPU instances. While existing works on guaranteeing

inference performance service level objectives (SLOs) focus on either temporal sharing of GPUs or reactiveGPU resource scaling and

inference migration techniques, how to proactivelymitigate such severe performance interference has received comparatively little

attention. In this paper, we propose iGniter, an interference-awareGPU resource provisioning framework for cost-efficiently achieving

predictable DNN inference in the cloud. iGniter is comprised of two key components: (1) a lightweight DNN inference performance

model, which leverages the system and workload metrics that are practically accessible to capture the performance interference; (2) A

cost-efficient GPU resource provisioning strategy that jointly optimizes the GPU resource allocation and adaptive batching based on

our inference performance model, with the aim of achieving predictable performance of DNN inference workloads. We implement a

prototype of iGniter based on the NVIDIA Triton inference server hosted on EC2 GPU instances. Extensive prototype experiments on

four representative DNN models and datasets demonstrate that iGniter can guarantee the performance SLOs of DNN inference

workloads with practically acceptable runtime overhead, while saving the monetary cost by up to 25% in comparison to the state-of-the-

art GPU resource provisioning strategies.

Index Terms—Cloud-based DNN inference, predictable performance, GPU resource provisioning, performance interference

Ç

1 INTRODUCTION

WITH the proliferating artificial intelligence applications,
deep neural network (DNN) inference workloads are

becoming increasingly commonplace in cloud datacen-
ters [1]. While DNN models are getting more complex and
thus consuming more computation and memory resources,
GPUs have served as the key accelerator to reduce the infer-
ence latency and meet the service level objective (SLO) [2].
Hence, modern internet companies like Google, Alibaba,
and JD are increasingly adopting GPUs for serving DNN
inference in their latency-critical products such as voice
assistants [3], recommendation systems [4], and video anal-
ysis [5]. To cut down the inference budget and facilitate
cloud-based DNN inference, most cloud providers have
recently launched commercial cloud AI platforms such as
AWS SageMaker [6] and Google Vertex AI [7]. As reported
by Omdia, NVIDIA GPUs held an 80:6% market share of AI
processors in cloud datacenters in 2020 and expect to reach
37.6 billion in revenue worldwide by 2026 [8].

To improve the utilization of GPU resources, temporal
sharing [9] and spatial sharing [10] are two common GPU
resource multiplexing techniques. Many existing works
(e.g., Cocktail [11], Clockwork [12]) leverage temporal shar-
ing of GPUs to optimize the DNN inference performance
and reduce the monetary cost. However, a recent study [13]
has shown that temporal sharing of GPUs to execute DNN
inference workloads can intrinsically result in GPU resource

� Fei Xu, Jianian Xu, Jiabin Chen, and Ruitao Shang are with the Shanghai
Key Laboratory of Multidimensional Information Processing, School of Com-
puter Science and Technology, East China Normal University, Shanghai
200062, China. E-mail: fxu@cs.ecnu.edu.cn, {51194506038, 51215901054,
51205901042}@stu.ecnu.edu.cn.

� Li Chen is with the School of Computing and Informatics, University
of Louisiana at Lafayette, Lafayette, LA 70504 USA. E-mail:
li.chen@louisiana.edu.

� Zhi Zhou is with the Guangdong Key Laboratory of Big Data Analysis and
Processing, School of Computer Science and Engineering, Sun Yat-sen Univer-
sity, Guangzhou, Guangdong Province 510006, China. E-mail: zhouzhi9@mail.
sysu.edu.cn.

� Fangming Liu is with the Peng Cheng Laboratory, Shenzhen, Guangdong
Province 518066, China, and also with the Huazhong University of Science
and Technology, Wuhan, Hubei 430074, China. E-mail: fangminghk@gmail.
com.

Manuscript received 6 January 2022; revised 21 October 2022; accepted 22
December 2022. Date of publication 28 December 2022; date of current version
13 January 2023.
This work was supported in part by the NSFC under Grant 61972158, in part
by the Science and Technology Commission of Shanghai Municipality under
Grants 20511102802 and 18DZ2270800. The work of Li Chen was supported
in part by BoRSF under Grants LEQSF(2019-22)-RD-A-21 and LEQSF
(2021-22)-RD-D-07, and in part by NSF under Grant OIA-2019511. The
work of Zhi Zhou was supported in part by the National Key Research &
Development (R&D) Plan under Grant 2022YFB4500704, in part by NSFC
under Grant 62172454. The work of Fangming Liu was supported in part by
The Major Key Project of PCL under Grant PCL2022A05.
(Corresponding author: Fei Xu.)
Recommended for acceptance by P. D’Ambra.
This article has supplementary downloadable material available at https://doi.
org/10.1109/TPDS.2022.3232715, provided by the authors.
Digital Object Identifier no. 10.1109/TPDS.2022.3232715

812 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 3, MARCH 2023

1045-9219 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on February 05,2023 at 05:02:31 UTC from IEEE Xplore. Restrictions apply.

wastage. To fully exploit the computation and memory
resources of GPUs, NVIDIA has recently developed the
multi-process service (MPS) [14] technique, which allows
multiple inference workloads to spatially share the GPU
resources with a limited percentage [15] (e.g., 50%).

Though MPS can configure an amount of GPU resources
for each inference workload, there exists noticeable perfor-
mance interference among the DNN inference workloads co-
located on a GPU device. As evidenced by our motivation
experiments in Section 2.2, the DNN inference latency can
be prolonged by around 35% with only 5 co-located work-
loads on a GPU device. Such severe performance interfer-
ence makes inference workloads easily suffer from
unexpected SLO violations, which mainly originate from
the shared resource contention in three aspects: (1) the
increased scheduling delay of kernels by the GPU scheduler,
and (2) the severe contention of GPU L2 cache space, as well as
(3) the reduced GPU frequency due to limited power cap.
Accordingly, it is essential to explicitly consider perfor-
mance interference when provisioning GPU resources to
DNN inference workloads, in order to meet the stringent
performance SLOs for users.

To guarantee the performance SLOs of DNN inference
workloads, many research efforts have been devoted to
batch size configuration (e.g., Clipper [16]), request schedul-
ing (e.g., Clockwork [12]), resource autoscaling (e.g., Cock-
tail [11]), and GPU resource allocation (e.g., GSLICE [13]),
as summarized in Fig. 1. However, they are oblivious to the
severe performance interference among inference work-
loads, which is likely to cause resource under-provisioning
and thus trigger frequent reactive adjustment of GPU resour-
ces. There have also been recent works on mitigating such
performance interference through reactive inference migra-
tion (e.g., INFaaS [17]) or characterizing the performance
interference of two co-located workloads using a linear
regression model (e.g., gpu-lets [18]). Nevertheless, such an
interference model requires a large number (i.e., thousands)
of workload profiling and cannot readily be applied to mul-
tiple co-located inference workloads. As a result, there has
been scant research attention paid to achieving predictable
DNN inference by characterizing the performance interfer-
ence in a lightweight manner and proactively mitigating such
interference for inference workloads.

To fill this gap, in this paper, we design and implement
iGniter, an interference-aware GPU resource provisioning
framework to achieve predictable performance [19] (i.e.,
latency and throughput) of DNN inference workloads while
minimizing the inference budget in the cloud. To the best of
our knowledge, iGniter is the first attempt to demonstrate
how to characterize the performance interference of DNN infer-
ence on GPUs in a lightweight manner, and cost-efficiently provi-
sion GPU resources for inference workloads by jointly optimizing
the GPU resource allocation and adaptive batching. Specifically,
we make the following contributions in iGniter as below.
" First, we build a lightweight analytical performance model

to explicitly capture the performance interference among DNN
inference workloads (Section 3). It empirically leverages a set
of key system and workload metrics (e.g., the GPU L2 cache
utilization, the number of kernels) to characterize the severe
contention of GPU scheduler, GPU L2 cache space, and
GPU power consumption, as identified by our motivation
experiments in Section 2.2.
" Second, we propose a cost-efficient GPU resource provi-

sioning strategy to guarantee the performance SLOs of DNN infer-
ence workloads (Section 4.1). Given the DNNmodels with their
performance SLOs, iGniter first leverages our inference per-
formance model to calculate the appropriate batch size and
lower bound of allocated GPU resources. It then greedily
identifies the GPU device for placement with the minimum
performance interference and allocates GPU resources for
each inferenceworkload.
" Finally, we implement a prototype1 of iGniter based on the

NVIDIA Triton inference server [20] with three pieces of mod-
ules, including an inference workload placer and a GPU
resource allocator as well as an inference performance predictor
(Section 4.2). We conduct prototype experiments on a clus-
ter of 10 p3.2xlarge GPU instances with 12 representative
inference workloads on Amazon EC2 (Section 5). Experi-
ment results show that iGniter delivers predictable perfor-
mance to DNN inference workloads with acceptable
runtime overhead, while reducing the monetary cost by up
to 25% compared with the state-of-the-art GPU resource
provisioning strategies.

2 BACKGROUND AND MOTIVATION

In this section, we first seek to analyze the severity of perfor-
mance interference among co-located DNN inference work-
loads and identify the key factors that cause such interference.
Next, we present an illustrative example to show how to ade-
quately provision GPU resources for workloads to achieve
predictable DNN inference.

2.1 Multi-Process Service of NVIDIA GPUs

Toprovide powerful computing ability, theNVIDIAGPUhas
been equipped with a number of Streaming Multiprocessors
(SMs), and accordingly, GPUs are currently widely used for
hosting DNN inference workloads in the cloud [12]. To
improve the resource utilization of GPUs, NVIDIA MPS [14]
has been developed to share GPU resources (i.e., SMs) among
multiple inference workloads executed on a single GPU
device. One process commonly hosts one inferenceworkload.

Fig. 1. iGniter positioning in the literature context of predictable DNN
inference serving on GPUs.

1. https://github.com/icloud-ecnu/igniter

XU ETAL.: IGNITER: INTERFERENCE-AWARE GPU RESOURCE PROVISIONING FOR PREDICTABLE DNN INFERENCE 813

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on February 05,2023 at 05:02:31 UTC from IEEE Xplore. Restrictions apply.

However, an uncontrollable allocation of GPU resources can
degrade theQuality-of-Service (QoS) of DNN inferencework-
loads. To deal with such a performance issue,MPS provisions
each DNN inference workload with an amount of limited
GPU resources (i.e., a set of SMs), starting from the NVIDIA
Volta architecture [15]. In general, the batch size of DNN
inference also requires tuning to improve the GPU resource
utilization, without violating the performance SLOs of infer-
enceworkloads [2].

The execution of a DNN inference workload on a GPU
device mainly has three phases: First, the host CPU transmits
the inference input data to theGPUdevice over the PCIe inter-
connect. Second, the GPU device executes the DNN inference
query. Finally, the inference result is transmitted back to the
host CPU via the PCIe interconnect. To improve the GPU
resource utilization, the mainstream DNN inference servers
(e.g., NVIDIA Triton [20]) have developed the CUDA streams
to overlap the data loading phase and the GPU execution
phase of different DNN inference queries in an asynchronous
manner. As shown in Fig. 2, the DNN inference queries (i.e.,
i1; i2; i3) are launched in two different streams which can be
executed concurrently. Specifically, Stream 1 (i.e., the data
loading phase of i2 and i3) overlaps with Stream 2 (i.e., the
GPU execution phase of i1 and i2). In particular, an inference
query consists of a number of kernels (e.g., kn) which require
scheduling onto SMs [21], leading to a moderate amount of
scheduling delay of kernels in the GPU execution stream.

2.2 Performance Interference Among Co-Located
DNN Inference Workloads

Though MPS facilitates the spatial GPU resource sharing
among co-located inference workloads, it still brings

non-negligible performance interference. To examine the
severity of such interference, we conduct two motivation
experiments using p3.2xlarge EC2 instances [22] equipped
with NVIDIA V100 GPUs. We use AlexNet [23], ResNet-
50 [24], and VGG-19 [25] models executed on the NVIDIA
TensorRT [26] framework as our DNN inference workloads.
Specifically, we first launch 1 to 5 identical inference work-
loads concurrently and each is allocated 20% of GPU resour-
ces. Second, we launch two DNN inference workloads on a
GPU, and each is allocated 50% of GPU resources. We vary
the batch size of one workload from 1 to 32 while fixing the
batch size of the other workload as 16. In particular, we
measure the average DNN inference latency by excluding
the inference batching delay. We illustrate the experimental
results with error bars of standard deviation by repeating
each experiment three times.

As shown in Figs. 3 and 4, the DNN inference latency
increases from 0:83% to 34:98%, as the number of co-located
workloads increases from 2 to 5 and the batch size of co-
located inference workloads varies from 1 to 32. The experi-
ment results indicate that the performance interference is
not uncommon for MPS even with limited GPU resources
(i.e., GPU spatial sharing [14]). Our observation above is
consistent with the findings in a more recent work [18].
Through an in-depth analysis, we find that such severe per-
formance interference among DNN inference workloads is
mainly caused by the following three factors.

Increased Scheduling Delay of Kernels. Each kernel of a
DNN inference workload needs to be scheduled onto SMs
by the GPU scheduler. As shown in Fig. 5, we observe that:
First, the scheduling delay shows a roughly linear increase
as the number of co-located workloads increases from 2 to
5. We conjecture that the GPU scheduler requires schedul-
ing the kernels from different inference workloads onto

Fig. 2. CUDA streams mechanism overlaps the execution of different
DNN inference queries (i.e., i1; i2; i3) in an inference workload, and the
kernels (e.g., kn) are scheduled onto SMs during the GPU execution
phase.

Fig. 4. Normalized inference latency of ResNet-50 when co-located with
AlexNet or VGG-19 on a V100 GPU, as the batch sizes of AlexNet and
VGG-19 vary from 1 to 32, with respect to ResNet-50 running alone.

Fig. 3. Normalized inference latency of AlexNet, ResNet-50, and VGG-
19 achieved on a V100 GPU, as the number of co-located inference
workloads varies from 1 to 5, with respect to the workloads running
alone.

Fig. 5. Scheduling delay of AlexNet, ResNet-50, and VGG-19 with differ-
ent numbers of workloads executed on a V100 GPU.

814 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 3, MARCH 2023

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on February 05,2023 at 05:02:31 UTC from IEEE Xplore. Restrictions apply.

SMs in a round-robin manner. Second, the scheduling delay
of ResNet-50 increases much faster than AlexNet. This is
simply because the number of kernels of ResNet-50 is bigger
than that of AlexNet.

Severe Contention of GPU L2 Cache Space. ThoughMPS can
partition GPU resources, the GPU L2 cache space is still
shared by co-located DNN inference workloads [27]. To char-
acterize the severity of such L2 cache contention on a GPU
device, we simply adopt a system metric, i.e., the L2 cache
request hit ratio. As shown in Fig. 6, we observe that the GPU
active time (i.e., GPU execution latency - GPU scheduling
delay, as depicted in Fig. 2) of ResNet-50 is inversely related
to the GPU L2 cache hit ratio. As the number of co-located
workloads increases, the severer cache contention leads to a
smaller L2 cache hit ratio, which in turn increases the GPU
active time of an inferenceworkload.

Reduced GPU Frequency due to Limited Power Cap. Reduc-
tion of GPU frequency brings performance degradation to
GPU workloads [28]. As shown in Fig. 7, we observe that:
First, the GPU frequency starts to decrease once the GPU
power reaches its upper limit value. This is because more
inference workloads consume a larger amount of power on
a GPU device, while the GPU has to maintain the upper
limit of GPU power through frequency reduction. Second,
the GPU power of VGG-19 and ResNet-50 shows a roughly
linear relationship to the number of inference workloads, as
long as the GPU power is below its upper limit value.

Based on our analysis above, we further explain why the
batch size of co-located workloads (i.e., AlexNet, VGG-19)
can moderately affect the DNN inference performance (i.e.,
ResNet-50) by 6:36% – 13:93%, as shown in Fig. 4. Such per-
formance interference can mainly be attributed to the
resource contention of GPU L2 cache space and GPU power.
As the batch sizes of AlexNet and VGG-19 increase from 1
to 32, the GPU L2 cache utilization of the two workloads

increases from 11:1% to 18:4% and from 16:9% to 22:0%,
respectively. Similarly, the GPU power of AlexNet and VGG-
19 also increases from 108 W to 156 W and from 139 W to 179
W, respectively, thereby causing GPU frequency reduction.
Accordingly, such severe contention of the GPU L2 cache
space and GPU power from co-located inference workloads
inevitably prolongs theDNN inference latency.

Summary. First, the performance interference amongDNN
inference workloads cannot be overlooked. We identify the
main factors that cause such interference as the severe conten-
tion of the GPU scheduler, GPU L2 cache space, and GPU
power consumption among co-located inference workloads
on a GPU device. Second, explicitly considering the perfor-
mance interference is compelling when provisioning GPU
resources to DNN inference workloads, so as to guarantee the
performance of DNN inferenceworkloads.

2.3 An Illustrative Example

To achieve predictable DNN inference performance and cost-
efficient GPU resource provisioning, we propose iGniter in
Section 4 and illustrate its effectiveness by conducting another
motivation experiment with AlexNet, ResNet-50, and VGG-
19 models. We set the latency SLOs (ms) and request arrival
rates (req/s) for the three inference workloads as 15, 40, 60
and 500, 400, 200, respectively. We define the P99 latency of
an inference workload exceeding its latency SLO as a
violation.

As shown in Table 1, GSLICE [13] and gpu-lets [18]
require 1 GPU and 2 GPUs, respectively. Unfortunately,
they make two DNN models violate their SLOs. In contrast,
our iGniter strategy provisions 1 GPU for hosting the three
models appropriately and it guarantees their SLOs. Specifi-
cally, we find that GSLICE and gpu-lets tend to provision
more GPU resources and larger batch sizes to AlexNet and
ResNet-50 than iGniter. This is because the two strategies
aim to maximize the request throughput while guarantee-
ing latency SLOs. In addition, GSLICE [13] is an interference-
unaware strategy, which tunes the allocated GPU resources
for inference workloads separately. Accordingly, the total
allocated resources can exceed the maximum resources (i.e.,
100%) of a GPU device which inevitably leads to the conten-
tion of SMs, causing high long-tail inference latency.

Though gpu-lets [18] explicitly considers the performance
interference, it works only for two inference workloads on a GPU

TABLE 1
Comparison of GPU Resource Provisioning Plans and SLOVio-
lations Achieved by the GPU-Lets, GSLICE and Our iGniter

Strategies for Three Representative DNN Models (i.e., AlexNet
(A), ResNet-50 (R), VGG-19 (V))

Approaches Resource provisioning plans Violations
GPU: modelðresource; batchÞ

GSLICE [13]
GPU1 : Að37:5%; 18Þ, 2 models
Rð30%; 8Þ; Vð40%; 6Þ (A; R)

gpu-lets [18]
GPU1 : Að40%; 23Þ 2 models

GPU2 : Rð60%; 18Þ; Vð40%; 6Þ (A; R)

iGniter
GPU1 : Að10%; 4Þ, None

Rð30%; 8Þ; Vð37:5%; 6Þ

Fig. 6. GPU active time and L2 cache request hit ratio of ResNet-50 with
different numbers of workloads executed on a V100 GPU.

Fig. 7. GPU power and GPU frequency of VGG-19 and ResNet-50 with
different numbers of workloads executed on a V100 GPU.

XU ETAL.: IGNITER: INTERFERENCE-AWARE GPU RESOURCE PROVISIONING FOR PREDICTABLE DNN INFERENCE 815

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on February 05,2023 at 05:02:31 UTC from IEEE Xplore. Restrictions apply.

device. Also, gpu-lets only considers the interference for the
newly-arrived inference workload (i.e., VGG-19), and it does
not change the allocated GPU resources and batch size of the
originally-placed workload (i.e., ResNet-50) on the GPU.
Accordingly, the inference latency of ResNet-50 exceeds its
latency SLO due to the interference impact from VGG-19.
Moreover, gpu-lets first provisions an efficient amount of GPU
resources and then sets the batch size as large as possible for
inference workloads. However, a large batch size cannot fully
utilize the GPU resources at a low request arrival rate. It can
cause SLO violations due to long batching latency. In contrast,
iGniter sets an appropriate batch size for inference workloads
that just meet their latency SLOs and request arrival rates. It
further provisions GPU resources by explicitly considering
the interference among multiple (more than 2) inference
workloads to guarantee the DNN inference performance in a
cost-efficientmanner.

3 MODELING DNN INFERENCE PERFORMANCE

ON GPUS

In this section, we first build an analyticalmodel to predict the
DNN inference performance in the cloud. We explicitly con-
sider the performance interference among DNN inference
workloads with different batch sizes and allocated GPU
resources. We next formulate the GPU resource provisioning
problem to minimize the monetary cost while guaranteeing
inference performance SLOs. The key notations in our perfor-
mancemodel are summarized in Table 2.

3.1 Predicting DNN Inference Performance
With GPU Resources

We consider a set of constantly-arrived DNN inference work-
loads denoted by I ¼ fi1; i2; :::; img over a period of time
(e.g., several minutes). A set of GPU devices to be allocated
is denoted by J ¼ fj1; j2; :::; jgg with a given GPU type. As

elaborated in Section 2.1, the execution of DNN inference
on the GPU can be divided into three sequential steps: data
loading, GPU execution, and result feedback. Accordingly, the
DNN inference latency tijinf of a workload i executed on a
GPU device j can be calculated by summing up the data
loading latency tiload, the GPU execution latency tijgpu, and the
result feedback latency tifeedback, which is given by

tijinf ¼ tiload þ tijgpu þ tifeedback: (1)

As discussed in Section 2.1, the data loading phase overlaps
with the GPU execution and result feedback phases in the
mainstream DNN inference servers (e.g., Triton [20]) to
improve the GPU resource utilization. Accordingly, we esti-
mate the DNN inference throughput hij as

hij ¼
bi

tijgpu þ tifeedback
; (2)

where bi 2 N þ denotes the batch size of an inference work-
load i 2 I .

Data Loading and Result Feedback Phases. As discussed in
Section 2.1, the inference input and result data are transmit-
ted between the CPU and GPU devices via the PCIe. In gen-
eral, both the inference input data size and result data are
linear to the batch size bi. We calculate the data loading
latency tiload and the result feedback latency tifeedback as

tiload ¼
diload � b

i

Bpcie
and tifeedback ¼

difeedback � b
i

Bpcie
; (3)

respectively, where diload and difeedback are the input data size
and result data size, respectively, when bi ¼ 1. Bpcie denotes
the available PCIe bandwidth of a GPU device.

GPU Execution Phase. Each DNN inference workload is
executedwith an amount of allocated GPU resources denoted
by rij 2 ½0; rmax�; 8i 2 I ; j 2 J , which are actually mapped to
a set of SMs [14]. In general, rmax is set as 1. As depicted in
Fig. 2, the GPU execution phase consists of GPU scheduling
and kernels running on the allocated SMs (i.e., rij). Moreover,
the GPU execution phase can be prolonged by the GPU fre-
quency reduction due to the workload co-location, as evi-
denced by Section 2.2. Accordingly, we formulate the GPU
execution latency tijgpu as

tijgpu ¼
tijsch þ tijact

fj

F

; (4)

where tijsch and tijact denote the total scheduling delay of ker-
nels and the GPU active time of an inference workload i exe-
cuted on a GPU device j, respectively, without any GPU
frequency reductions. fj and F denote the actual and maxi-
mum GPU frequency, respectively, on a GPU device j.

In the following, we first model the scheduling delay tijsch of
DNN inference workloads. Intuitively, tijsch is roughly linear
to the number of kernels ni

k for a DNN inference workload
i, which can be estimated as

tijsch ¼ kisch þ D
j
sch

� �

� ni
k; (5)

where kisch denotes the scheduling delay when the workload
i is running alone on a GPU device. Dj

sch is the increased

TABLE 2
Key Notations in Our DNN Inference Performance Model

Notation Definition

I ;J Sets of DNN inference workloads and allocated
GPUs

tijinf DNN inference latency of an inference workload i
on a GPU j

hij Throughput of an inference workload i on a GPU
j

tiload, DNN inference data loading latency and result
tifeedback feedback latency of an inference workload i
tijgpu GPU execution latency of an inference workload i

on a GPU j
tijsch, t

ij
act Scheduling delay and GPU active time of an

inference workload i on a GPU j
fj Actual frequency of a GPU j

pjdemand Total power demand of a GPU j
kiact GPU active time of an inference workload iwhen

running alone on a GPU device
pi, ci Power consumption and L2 cache utilization of

an inference workload iwhen running alone on a
GPU device

rij, vij GPU resource allocation and placement of an
inference workload i on a GPU j

bi Batch size of an inference workload i

816 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 3, MARCH 2023

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on February 05,2023 at 05:02:31 UTC from IEEE Xplore. Restrictions apply.

scheduling delay caused by the interference on the GPU
resource scheduler, which is relevant to the number of co-
located inference workloads as evidenced by Section 2.2.
Accordingly, we estimate the increased scheduling delay as

D
j
sch ¼

0
P

i2I v
ij � 1;

asch �
P

i2I v
ij þ bsch otherwise; :

�

(6)

where asch and bsch are the coefficients to characterize the
increased scheduling delay on a given GPU type.

P

i2I v
ij

denotes the number of co-located inference workloads on a
GPU device j. vij denotes whether an inference workload i
is running on a GPU device j, which is given by

vij ¼
1 a workload i runs on a GPU j ðrij > 0Þ;
0 otherwise ðrij ¼ 0Þ:

�

(7)

We next model the GPU active time tijact of an inference
workload i executed on a GPU device j. As evidenced by
Section 2.2, the GPU active time is inversely proportional to
the GPU L2 cache hit ratio. We simply leverage a system
metric called GPU L2 cache utilization to characterize the
workload demand on the GPU L2 cache space. Given a fixed
supply of L2 cache space on a GPU device, a higher GPU L2
cache utilization (i.e., demand) indicates severer contention
on the GPU L2 cache space, thereby causing a longer GPU
active time. Accordingly, we estimate tijact as

tijact ¼ kiact �

�

1þ ai
cache �

X

i2Ini

ci � vij
� �

�

; (8)

where ai
cache denotes the coefficient to characterize the pro-

longed GPU active time due to L2 cache contention for an
inference workload i. kiact and ci are the GPU active time
and L2 cache utilization, respectively, when an inference
workload i is running alone on a GPU device.

Finally, we model the GPU frequency fj on a GPU device
j. As evidenced by Section 2.2, the GPU frequency decreases
dramatically as the total GPU power demand pjdemand of
workloads exceeds the upper limit of GPU power supply P
of a GPU device. As the GPU frequency is highly relevant to
the GPU power [28], we estimate fj as

fj ¼
F pjdemand � P;

F þ af � pjdemand � P
� �

pjdemand > P;

(

(9)

where af denotes the coefficient to characterize the relation-
ship between the GPU power and frequency on a GPU
device. In addition, we estimate the total power demand of
a GPU device j by summing up the power consumption pi

of all workloads and the idle power pidle of a GPU device,
which is given by

pjdemand ¼ pidle þ
X

i2I

pi � vij
� �

: (10)

In particular, we obtain pi by running an inference work-
load i alone on a GPU device of the given type.

Obtaining Model Coefficients. Based on the above, we have
8 workload-specific coefficients (i.e., diload, d

i
feedback, n

i
k, k

i
sch, k

i
act,

pi, ci, ai
cache) and 7 hardware-specific coefficients (i.e., P , F ,

pidle, Bpcie, af , asch, bsch) in our performance model. Specifi-
cally, four workload-specific coefficients (i.e., diload, d

i
feedback,

ni
k, k

i
sch) are obtained by profiling the workload only once

using the Nsight Systems [29]. The available PCIe band-
width Bpcie is measured by transferring data from the main
memory to GPU memory. Given a GPU type, three hard-
ware-specific coefficients (i.e., P , F , pidle) are obtained using
the nvidia� smi [30]. The GPU frequency coefficient af

and scheduling coefficients (asch, bsch) as well as cache coef-
ficient ai

cache are obtained by launching multiple (e.g., 2 to 5)
inference workloads concurrently. Moreover, we obtain the
GPU active time kiact, power consumption pi, and the L2
cache utilization ci of an inference workload i running alone
on a GPU device as follows.

Specifically, as depicted in Fig. 8, the GPU active time kiact
shows a roughly inverse proportion to the amount of allo-
cated GPU resources rij. Also, the GPU active time increases
fast with the batch size bi, which can be formulated by a
quadratic function. Accordingly, we formulate kiact as

kiact ¼
ki1 � ðb

iÞ2 þ ki2 � b
i þ ki3

rij þ ki
4

þ ki5; (11)

where ki1, k
i
2, k

i
3, k

i
4, k

i
5 denote the model coefficients for an

inference workload i. In addition, Fig. 9 shows that both the
power consumption pi and L2 cache utilization ci (measured
by Nsight Compute [31]) of an inference workload i grow line-
arlywith the GPU processing ability (i.e., b

kact
). This is because

a stronger GPU processing ability commonly leads to higher
GPU resource utilization and power consumption. Accord-
ingly, we estimate pi and ci as

pi ¼ ai
power �

bi

kiact
þ bi

power;

ci ¼ ai
cacheutil �

bi

kiact
þ bi

cacheutil;

where ai
power, b

i
power and ai

cacheutil, b
i
cacheutil denote the model

coefficients to characterize the relationship between the

Fig. 8. GPU active time of ResNet-50 with different batch sizes and allo-
cated GPU resources.

Fig. 9. Power consumption and L2 cache utilization of ResNet-50 with
different GPU processing abilities.

XU ETAL.: IGNITER: INTERFERENCE-AWARE GPU RESOURCE PROVISIONING FOR PREDICTABLE DNN INFERENCE 817

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on February 05,2023 at 05:02:31 UTC from IEEE Xplore. Restrictions apply.

power consumption, L2 cache utilization and the GPU proc-
essing ability. Such model coefficients above can be
obtained by fitting several (e.g., more than 5) sets of profiled
workload data using the least squares method [32]. In particu-
lar, we only require profiling each inference workload with
11 different configurations of allocated GPU resources and
batch sizes, which is far less than the number (i.e.,
40� 32 ¼ 1; 280) of all possible configurations of allocated
GPU resources (e.g., 40 choices) and batch sizes (e.g., 32
choices) for each inference workload, even without consid-
ering performance interference.

3.2 Analyzing GPU Resource Provisioning
Optimization Problem

Based on our DNN inference performance model above,
we proceed to define the optimization problem of GPU
resource provisioning as follows: Given the inference perfor-
mance SLOs in terms of the request arrival rate Ri and latency
SLO T i

slo, how can we provision GPU resources rij and configure
batch size bi for each inference workload i, to achieve predictable
DNN inference performance while minimizing the monetary cost
C of allocated GPU resources? Accordingly, our online optimi-
zation problem can be formulated as

min
bi;rij

C ¼
X

j2J

uj (12)

s.t.
X

j2J

hij � vij � Ri; 8i 2 I (13)

X

j2J

tijinf � v
ij �

T i
slo

2
; 8i 2 I (14)

X

i2I

rij � rmax; 8j 2 J (15)

X

j2J

vij ¼ 1; 8i 2 I (16)

where uj denotes the unit price of each GPU device j, and
Eq. (12) defines our objective function which minimizes the
monetary cost C of GPU resource provisioning, subject to
the following four constraints. Specifically, Constraint (13)
guarantees that the throughput of each inference workload
can meet its arrival rate Ri. Constraint (14) guarantees the
inference latency of each inference workload below its
objective latency

T i
slo
2
. This is because the batch inference

latency cannot exceed half of the SLO [9] by excluding the
performance impact of request batching and queueing. Con-
straint (15) denotes that the allocated GPU resources of each
GPU device should be no more than the maximum GPU
resources rmax. Constraint (16) denotes that each inference
workload can only be placed on one GPU device.

Problem Analysis.According to Eq. (12), the monetary cost
C is affected by the unit price uj and set of allocated GPU
devices J , as the DNN inference models and requests arrive
constantly. As uj becomes a constant value u given a GPU
type, the optimization problem can be reduced to minimiz-
ing the number jJ j of provisioned GPU devices. To achieve
such a goal, each inference workload requires to be allo-
cated GPU resources that just meet the request arrival rate
and latency SLOs.

Theorem 1. Given a DNN inference workload with the arrival
rate and latency SLO, the lower bound rilower of allocated GPU

resources (i.e., the allocated GPU resources that DNN inference
workloads are running alone on a GPU device) and the appro-
priate batch size biappr can be calculated as

biappr ¼

	

T i
slo �R

i �Bpcie

2 � Bpcie þRi � diload
� �

; (17)

rilower ¼

	

gi

di � runit
�

ki4
runit

� runit: (18)

where gi ¼ ki1 � ðb
i
apprÞ

2 þ ki2 � b
i
appr þ ki3 and di ¼

T i
slo
2
�

ðdi
load
þdi

feedback
Þ�biappr

Bpcie
� ki5 � kisch � n

i
k. runit denotes the allocation

unit of GPU resources, which can be empirically set as 2:5%

(i.e., around 2 SMs) for NVIDIA V100 GPUs.

The proof can be found in Appendix A, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2022.3232715.
Our selected appropriate batch size biappr can guarantee the

request arrival rate by letting tijgpu ¼
T i
slo
2
� tiload � tifeedback.

Accordingly, Constraint (13) and Constraint (14) can be
combined as one constraint. The original optimization prob-
lem in Eq. (12) can be simplified as

min
rij

u

rmax
�
X

i2I

rilower þ
X

j2J

X

i2I

rijinter þ
X

j2J

rjf

 !

(19)

s.t.

diload þ difeedback

� �

� biappr

Bpcie
þ
X

j2J

tijgpu �
T i
slo

2
; 8i 2 I

ð15Þ; ð16Þ;

where rijinter ¼ rij � rilower � v
ij is the increased GPU resources

caused by the interference of co-located inference work-
loads. rjf ¼ rmax �

P

i2I r
ij denotes the unallocated GPU

resource fragments on a GPU device j. Accordingly, given
the fixed lower bound rilower of GPU resources, our optimiza-
tion problem can be transformed into minimizing the GPU
resource fragmentation and the increased GPU resources caused
by the performance interference. Suppose that there is no
performance interference among the inference workloads
(i.e., rijinter ¼ 0), our problem can be reduced to a classic bin
packing problem which is already shown to be NP-hard [33].
Obviously, our original optimization problem is more com-
plicated than such a bin packing problem. Accordingly, we
turn to devising a heuristic algorithm to acquire an appro-
priate (i.e., sub-optimal) solution to our GPU resource provi-
sioning problem.

4 DESIGN OF IGNITER: GUARANTEEING

PERFORMANCE OF DNN INFERENCE
WORKLOADS

Based on the analysis of our DNN inference performance
model and the optimization problem defined in Section 3,
we further present iGniter in Algprithm 1, a simple yet effec-
tive GPU resource provisioning strategy to provide predict-
able performance (i.e., guarantee the latency SLO and
request arrival rate) for inference workloads, while mini-
mizing the monetary cost of provisioned GPU resources in
the cloud.

818 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 3, MARCH 2023

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on February 05,2023 at 05:02:31 UTC from IEEE Xplore. Restrictions apply.

4.1 Algorithm Design

To particularly answer “how to provision GPU resources for a
set of DNN inference workloads,” our iGniter strategy in Alg-
prithm 1 is quite intuitive: We first decide where to place infer-
ence workloads and then identify how to allocate GPU
resources to the workloads. To particularly reduce the unal-
located GPU resource fragments, iGniter sorts the inference
workloads according to rilower in descending order. It puts
these workloads onto a new GPU device only when there are
not enough GPU resources, accordingly to the ANYFIT

constraint [33].

Algorithm 1. iGniter: Cost-Efficient GPU Resource Provi-
sioning Strategy for Achieving Predictable Performance
of DNN Inference Workloads

Input: The latency SLO T i
slo and the request arrival rate Ri of

each inference workload i 2 I .
Output: Cost-efficient resource provisioning plan, including

the provisioned GPU resources rij and the appro-
priate batch size biappr as well as the number of allo-
cated GPUs g.

1: Acquire hardware-specific coefficients P , F , pidle, Bpcie, af ,
asch, bsch for a given GPU type, and obtain workload-specific
coefficients diload, d

i
feedback, n

i
k, k

i
sch, k

i
act, p

i, ci, ai
cache through

profiling each workload i 2 I ;
2: Initialize: the appropriate batch size biappr Eq. (17), the

lower bound of GPU resources rilower Eq. (18), and rij
0, 8i 2 I ; 8j 2 J , as well as g 1;

3: Sort workloads according to rilower in descending order;
4: for allworkload w in I to be placed on GPUs do
5: Initialize: the allocated GPU resources rija rij, 8i 2

I ; 8j 2 J , after placing an inference workload w, and
the minimum increased GPU resources caused by the
performance interference rmin

inter rmax, for placing the
workload w on the GPU q �1;

6: for all GPU device j in ½1; g� do
7: rija alloc gpusðT i

slo; r
ij
a ; r

w
lowerÞ;

8: Calculate the increased GPU resources caused by the
performance interference rijinter rija � rij; 8i 2 I on the
GPU j;

9: if
P

i2I r
ij
a � rmax

� �

&& ð
P

i2I r
ij
inter < rmin

interÞ then

10: Set q j, and rmin
inter

P

i2I r
ij
inter;

11: end if
12: end for // find an appropriate GPU for a workload w

13: if q ¼¼ �1 then
14: Update g gþ 1, and rwg rwlower // add one GPU

15: else
16: Update riq riqa , 8i 2 I // enough GPU resources

17: end if
18: end for

Inference Workload Placement Strategy. Given a set of DNN
inference workloads with their latency SLOs T i

slo and
request arrival rates Ri, iGniter first obtains the hardware-spe-
cific coefficients (i.e., P , F , pidle, Bpcie, af , asch, bsch) and the
workload-specific coefficients (i.e., diload, d

i
feedback, n

i
k, k

i
sch, k

i
act,

pi, ci, ai
cache) for each inference workload using a lightweight

coefficient acquisition method elaborated in Section 3.1 (line
1). With such obtained coefficients, iGniter calculates the
appropriate batch size biappr by Eq. (17) and the lower bound
of allocated GPU resources rilower by Eq. (18) (line 2). By

iterating over the sorted inference workloads set I , iGniter
greedily finds an appropriate GPU device to host each work-
load (lines 3-12). In more detail, iGniter initializes the allo-
cated GPU resources rija after placing the inference
workload on the GPU (lines 5). For each candidate GPU,
iGniter first calculates the allocated GPU resources rija and
the increased resources rijinter by Algprithm 2 (lines 6-8). It
then greedily identifies the appropriate GPU q which can
host the inference workload and cause the least performance
interference rmin

inter (lines 9-12). Finally, iGniter provisions a
new GPU device if there are not enough resources for the
inference workload w (i.e., q ¼¼ �1). Otherwise, it directly
places such a workload w onto the GPU device q with the
minimum increased GPU resources (lines 13-18).

GPU Resource Allocation Strategy. alloc gpus first initial-
izes the allocated GPU resources rwja of the workload w as
rwlower on the GPU j (line 1). alloc gpus then iteratively real-
locates the GPU resources for each workload i on the GPU j,
as long as SLO violations still occur for an inference work-
load i and the GPU j has enough unallocated GPU resour-
ces (lines 2-11). Specifically, alloc gpus calculates the
inference latency tijinf by Eq. (1) and judges whether the SLO
violation occurs for each workload i (lines 4-6). For these
SLO-violated workloads, alloc gpus increases the allocated
GPU resources by a unit of GPU resources (i.e., runit) to
guarantee the inference SLOs (lines 7-11).

Algorithm 2. alloc gpus: GPU Resource Allocation
Algorithm for Placing an Inference Workload on a GPU
Device

Input: The latency SLO T i
slo and the allocated GPU resources rija

of each inference workload i 2 I , before placing the
inference workload w on the GPU j, as well as the resource
lower bound rwlower of the inference workload w.

Output: Allocated GPU resources rija , after placing the
inference workload w on the GPU j.

1: Initialize: the allocated GPU resources rwja rwlower of the
workload w on the GPU j, and whether the GPU resources
require reallocation flag 1;

2: while ð
P

i2I r
ij
a � rmaxÞ && ðflag ¼¼ 1Þ do

3: Initialize: flag 0;
4: for all inference workload i on the GPU j do
5: Calculate the inference latency tijinf Eq. (1);
6: if tijinf >

T i
slo
2

then
7: Increase the allocated GPU resources rija rija þ runit

for a workload i;
8: Set flag 1;
9: end if // SLO violation occurs

10: end for // Reallocate GPU resources

11: end while

Remark. As Algprithm 1 (line 7) invokes Algprithm 2, the
time and space complexities of Algprithm 1 are in the order
of Oðm � g � n � mg Þ and OðmÞ, respectively, where m denotes
the number of inference workloads and g denotes the num-

ber of allocated GPUs. Also, n ¼
rmax�

P

i2I
r
ij
a

runit
þ 1 denotes

the cardinality of searching space of the allocated GPU
resources for an inference workload. m

g denotes the expected
number of inference workloads co-located on a GPU. As n
is practically limited (i.e., at most 40 values in the real-world

XU ETAL.: IGNITER: INTERFERENCE-AWARE GPU RESOURCE PROVISIONING FOR PREDICTABLE DNN INFERENCE 819

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on February 05,2023 at 05:02:31 UTC from IEEE Xplore. Restrictions apply.

scenario), the time complexity of Algprithm 1 can be reduced to
Oðm2Þ. To reduce thememory consumption of iGniter, we store
the sparse matrix rij in Algprithm 1 and Algprithm 2 using
adjacency lists, and accordingly the space complexities of Alg-
prithm 1 can be in the order of OðmÞ. As a result, the runtime
and memory overhead of our iGniter strategy is well contained
and will be validated in Section 5.4.

In particular, iGniter can be generalized to the heteroge-
neous types of cloud instances (with different types of GPU
hardware). Given multiple types of GPU instances, we only
need to obtain the hardware-specific coefficients and a part of
workload-specific coefficients (i.e., kisch, k

i
act, p

i, ci, ai
cache in line

1 of Algprithm 1) for each type of GPU device. The rest of
Algprithm 1 can directly be executed without any modifica-
tions. Accordingly, iGniter can be easily extended to the het-
erogeneous cluster, by judiciously selecting the most cost-
efficient type of GPU instances for DNN inference workloads,
which will be validated in Section 5.3.

4.2 Implementation of iGniter

We implement a prototype of the iGniter framework run-
ning on Amazon EC2 GPU instances [22] based on NVIDIA
Triton [20], which is a representative cloud inference server.
More specifically, our iGniter prototype is built upon the
Triton server v2.12.0 supported by the TensorRT backend
framework v8.0.1.6, with over 1,000 lines of Python, C++,
and Linux Shell codes. The source codes of our iGniter pro-
totype are publicly available on GitHub (i.e., https://

github.com/icloud-ecnu/igniter).
iGniter is periodically executed to provision GPU resources

for newly-arrived inference workloads. As illustrated in
Fig. 10, iGniter comprises three pieces of modules: an infer-
ence workload placer and a GPU resource allocator as well as an
inference performance predictor. Specifically, users submit
DNN models with their request arrival rates and SLOs to
the iGniter portal, which can be deployed on a low-end EC2
instance. It initiates a lightweight workload profiling on dif-
ferent types of GPU devices to acquire the workload-specific
and hardware-specific coefficients as elaborated in Sec-
tion 3.1. With such coefficients, the inference performance pre-
dictor first estimates the inference latency using our
performance model designed in Section 3.1. It then guides
our GPU resource allocator and inference workload placer to
identify an appropriate GPU device with the least perfor-
mance interference and guaranteed SLOs from candidate
GPUs. To particularly offset the interference impact, Alg-
prithm 2 can judiciously adjust allocated GPU resources for
both the newly-arrived and originally-placed inference
workloads on a GPU device. According to our cost-efficient

GPU resource provisioning plan generated by Algprithm 1,
the GPU device launcher finally builds a GPU cluster and
launches the Triton inference serving process for each DNN
inference workload on the provisioned GPU devices. In par-
ticular, the inference batch size is configured in Triton, and
the GPU resources are allocated to each Triton process using
the set active thread percentage command in MPS.

Dealing With Performance Prediction Errors. The perfor-
mance prediction errors can cause GPU resource under-pro-
visioning to DNN inference workloads, thereby resulting in
SLO violations. iGniter deals with such violations simply by
pre-launching a shadow Triton inference serving process
standby for each workload on a GPU device. Compared
with the original inference process, such a shadow process is
allocated an extra amount of GPU resources when active,
which is set as the smaller value of the 10:0% of GPU resour-
ces (i.e., the maximum prediction error measured in Sec-
tion 5.2) and the remaining resources on a GPU device.
Specifically, the DNN inference requests are first sent to the
original Triton inference serving process. User clients then
continuously monitor the accumulated P99 latency of each
inference workload every second. Once the P99 latency of
inference requests violates the latency SLO, iGniter activates
the shadow inference process and kills the original process.
It then redirects the upcoming inference requests to the acti-
vated shadow process. We will validate the robustness of
iGniter in handling the performance prediction errors of
DNN inference workloads in Section 5.3.

5 PERFORMANCE EVALUATION

In this section, we evaluate iGniter by carrying out a set of
prototype experiments with four representative DNN mod-
els (as listed in Table 3) on Amazon EC2 [22]. Our prototype
experiments seek to answer the following questions:

� Accuracy: Can our inference performance model in
iGniter accurately predict the performance of DNN
inference workloads? (Section 5.2)

� Effectiveness: Can our GPU resource provisioning
strategy in iGniter provide predictable DNN infer-
ence while saving the monetary cost in the cloud?
(Section 5.3)

Fig. 10. Overview of our iGniter prototype in a GPU cluster.

TABLE 3
Configurations of Three Apps With Four Performance SLOs, i.e.,
Latency (ms) and Throughput (req/s) for Four Representative

DNN Inference Models With HeterogeneousWorkload
Characteristics

Workload features AlexNet ResNet-50 VGG-19 SSD

GFLOPs 0.77 4.14 19.77 62.82

Params (MB) 61.10 25.56 143.67 26.29

App1
Latency 10 20 20 25

Throughput 1200 400 300 150

App2
Latency 15 30 30 40

Throughput 400 600 400 50

App3
Latency 20 40 40 55

Throughput 800 200 200 300

820 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 3, MARCH 2023

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on February 05,2023 at 05:02:31 UTC from IEEE Xplore. Restrictions apply.

� Overhead: How much runtime overhead of workload
profiling and algorithm computation does iGniter
practically bring? (Section 5.4)

5.1 Experimental Setup

GPU Cluster Configurations. We set up a GPU cluster of 10
p3.2xlarge EC2 instances, each equipped with 1 NVIDIA
V100 GPU card, 8 vCPUs, and 61 GB memory. On each
instance, we launch a Triton inference serving process and
its corresponding client with a constant request arrival rate
for each DNN inference workload. We measure the seven
hardware-specific coefficients using the Nsight Systems and
nvidia� smi according to Section 3.1. The maximum power
P , maximum frequency F , idle power pidle, and available
PCIe bandwidth Bpcie of NVIDIA V100 are 300 W, 1530
MHz, 53.5 W, and 10 GBps, respectively. The power coeffi-
cient af , scheduling coefficients asch and bsch are profiled as
�1:025, 0.00475 and �0:00902, respectively.

Configurations of DNN Inference Workloads. We select four
representative DNN models as listed in Table 3. The Alex-
Net [23], ResNet-50 [24], and VGG-19 [25] models are used
for image classification running on the ImageNet data-
set [34], while the SSD [35] model is used for object detec-
tion running on the VOC2012 dataset [36]. The four models
(AlexNet, ResNet-50, VGG-19, and SSD) have heterogeneous
workload characteristics, i.e., computation complexity
(GFLOPs) and model size (parameters), as elaborated in
Table 3. In particular, we use {W1, � � � , W12} to denote the
12 DNN inference workloads with various performance
SLOs in terms of latency SLOs and request arrival rates (i.e.,
expected throughputs) for App1, App2, and App3.

Baselines and Metrics.We compare iGniterwith the follow-
ing three strategies: (1) FFDþ: the First-Fit Decreasing (FFD)
algorithm which always allocates the lower bound of GPU
resources rilower and places inference workloads using FFD;
(2) GSLICEþ: GSLICE [13] patched with our inference
workload placement strategy, which tunes the allocated
GPU resources and batch sizes according to the average
latency and throughput of workloads; (3) gpu-letsþ: the
modified gpu-lets [18], which allocates the GPU resources
by maximizing the request throughput and places inference
workloads on the best-fit GPUs. We also change the batch
size configuration strategy of gpu-letsþ by increasing the
batch size to just meet the request arrival rate (the same as
iGniter), as large batch sizes cannot adapt to a low request

arrival rate as evidenced in Section 2.3. In addition, we focus
on two key metrics including the monetary cost and SLO vio-
lations, as elaborated in Section 2.3. We particularly calculate
the hourlymonetary cost ($=h) by multiplying the number of
provisioned GPU instances and the hourly price of each
instance. We do not multiply it by the inference execution
time, simply because the model inference requests arrive
constantly from users in our scenario.

5.2 Validating Inference Performance Model
in iGniter

We evaluate the inference latency of AlexNet, ResNet-50,
VGG-19, and SSD by varying the amount of GPU resources,
batch size, and the number of co-located inference work-
loads. We compare our iGniter performance model with the
state-of-the-art gpu-letsþ model [18]. We illustrate the
observed inference latency with error bars of standard devi-
ation by repeating experiments three times.

Can iGniteraccurately predict the inference latency with dif-
ferent amounts of GPU resources? As shown in Fig. 11, iGniter
can well predict the inference latency with a prediction
error of 0:04% – 2:32% for VGG-19 and 0:89% – 7:61% for
SSD, compared with 1:30% – 4:19% and 0:02% – 4:43%
under gpu-letsþ. Specifically, our predicted inference
latency of SSD is basically higher than gpu-letsþ and the
observed latency. This is because the active time of SSD pre-
dicted by our model is longer than the actual active time,
and the contention of GPU power consumption and L2
cache utilization further makes it worse. However, gpu-
letsþ offline profiles the actual inference latency for all pos-
sible configurations when SSD is running alone. In addition,
the predicted inference latency of VGG-19 under iGniter is
more accurate than that under gpu-letsþ. This is because
gpu-letsþ does not consider the contention of the GPU
scheduler and power consumption. The GPU frequency for
running VGG-19 drops from 1,530 MHz to 1,440 MHz due
to GPU power contention, which makes the prediction error
of gpu-letsþ larger than iGniter for VGG-19.

Can iGniteraccurately predict the inference latency with dif-
ferent batch sizes? As depicted in Fig. 12, iGniter can basically
predict the DNN inference latency with a prediction error
of 3:91% – 5:90% for AlexNet and 1:10% – 9:29% for ResNet-
50, compared with 2:67% – 6:23% and 0:78% – 9:76% of
gpu-letsþ. Specifically, the predicted inference latency of

Fig. 11. Comparison of the observed and predicted inference latency of
co-located VGG-19 and SSD with different allocated GPU resources
and batch size set as 3 under the gpu-letsþ and iGniter performance
models.

Fig. 12. Comparison of the observed and predicted inference latency of
co-located AlexNet and ResNet-50 with 50% of allocated GPU resources
and different batch sizes under the gpu-letsþ and iGniter performance
models.

XU ETAL.: IGNITER: INTERFERENCE-AWARE GPU RESOURCE PROVISIONING FOR PREDICTABLE DNN INFERENCE 821

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on February 05,2023 at 05:02:31 UTC from IEEE Xplore. Restrictions apply.

AlexNet under iGniter is smaller than the observed latency.
This is because the data loading and result feedback phases
occupy a larger part (i.e., 7% – 20%) of the inference latency
for AlexNet than that for other models (i.e., 1% – 7%). It
makes AlexNet share the PCIe bandwidth for a long period
of time with other workloads. However, we simply assume
that the contention of the PCIe bandwidth can be negligible.
Also, iGniter underestimates the inference latency of
ResNet-50 with a prediction error of 9:29% when the batch
size is set as 1. This is because the average GPU active time
of ResNet-50 is relatively small (i.e., 0.04 ms), which makes
it more sensitive to the GPU scheduler contention than other
workloads. As iGniter explicitly considers such contention
of GPU scheduler, the average prediction error of iGniter
(i.e., 3:82%) is smaller than that of gpu-letsþ (i.e., 4:15%) for
ResNet-50.

Can iGniteradapt to the co-location of multiple (4þ) inference
workloads? As shown in Fig. 13, we observe that iGniter can

accurately predict the inference latency of the four co-

located workloads with a prediction error of 1:53% – 5:02%,

while gpu-letsþ fails to predict the inference latency of more

than two co-located inference workloads. Specifically, our

iGniter model captures the interference on the GPU sched-

uler (Eq. (6)), L2 cache space (Eq. (8)), and power consump-

tion (Eq. (9)) for multiple co-located inference workloads.

Taking VGG-19 as an example, iGniter can well predict the

inference latency with a prediction error of 4:19% when co-

located only with SSD (in Fig. 11) and 1:53% when co-
located with three inference workloads (i.e., AlexNet,
ResNet-50, and SSD in Fig. 13), respectively. The rationale is
that: when VGG-19 is co-located with two more workloads
(i.e., AlexNet, ResNet-50), iGniter can still predict the
increase of GPU scheduling delay from 0.19 ms to 0.36 ms
and the decrease of GPU active time from 27.54 ms to 22.31
ms (as allocated 5% more GPU resources), as well as the
drop of GPU frequency from 1,530 MHz to 1,515 MHz.

5.3 Effectiveness of GPU Resource Provisioning
Strategy in iGniter

To illustrate the effectiveness of our iGniter resource provi-
sioning strategy, we conduct extensive experiments with
the 12 inference workloads in Table 3. Specifically, we mea-
sure the P99 latency of inference workloads within a period
of time (e.g., 30 seconds). During the online resource adjust-
ment, we adopt the resource provisioning plan after five
adjustments of GPU resources for GSLICEþ. Similarly, we
select the resource provisioning plan after dealing with pre-
diction errors for iGniter. As illustrated in Fig. 14, iGniter
guarantees the P99 inference latency of all 12 inference
workloads within their latency SLOs, while saving up to
25% of hourlymonetary cost compared with gpu-letsþ.

How can iGniter guarantee performance SLOs? As shown in
Fig. 14, FFD þ firstmakes 10 out of 12 workloads violate per-
formance SLOs because it does not consider the interference
of co-located workloads. In contrast, iGniter provisions an
additional 25% of GPU resources (i.e., GPU6) and ade-
quately places workloads on GPUs to proactively eliminate
SLO violations caused by the interference. Second, though
gpu-letsþ provisions the largest amount of GPU resources,
there still exist 3 workloads (i.e., W7, W8, W12) violating
performance SLOs. This is because gpu-letsþ does not
model the interference on request throughputs and it sim-
ply uses the profiled throughput when the workload is run-
ning alone. It inevitably makes workloads easily violate the
expected throughput. Third, GSLICEþ can cause 3 violations
even using our workload placement plan. This is because
the interference-unaware strategy (i.e., GSLICEþ) separately
adjusts allocated GPU resources and batch size according to
a fixed tuning threshold (e.g., 10%), which can make the

Fig. 13. Comparison of the observed and iGniter predicted inference
latency of co-located AlexNet, ResNet-50, VGG-19 and SSD with 25% of
allocated GPU resources and batch size set as 3.

Fig. 14. Comparison of GPU resource provisioning plans for the 12 workloads (i.e.,W1, � � � ,W12). iGniter, gpu-letsþ, FFDþ, and GSLICEþ provision
6, 8, 5, and 6 GPU devices (p3.2xlarge instances), which achieve $18:36, $24:48, $15:3, and $18:36 monetary cost per hour, respectively. In addition,
the four GPU resource provisioning strategies bring 0, 3, 10, and 3 SLO violations, respectively.

822 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 3, MARCH 2023

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on February 05,2023 at 05:02:31 UTC from IEEE Xplore. Restrictions apply.

inference performance oscillate frequently around SLOs. We
take W10 (co-located with W9 on GPU4) as an example. As
shown in Fig. 15, the average inference latency (i.e., 10.7 ms)
is lower than the 1

2
SLO (i.e., 12.5 ms) exceeding the tuning

threshold during 25.5 – 37.5 seconds. It then triggers
GSLICEþ to reduce the allocated GPU resources, which
makes SSD violate the expected throughput (150 req/s).
Moreover, GSLICEþ adjusts the GPU resources of W9 to
100% at the 51-th second without considering W10, and the
resources are successfully allocated to W9 at the 61-th sec-
ond (i.e., the red circle in Figs. 15 and 16). In such a case, the
overallocation of GPU resources occurs, which brings SLO
violations to both W9 and W10. In contrast, iGniter lever-
ages our analytical inference performance model to proac-
tively provision an adequate amount of GPU resources and
to configure an appropriate batch size when launching
inference workloads on GPUs.

Can iGniter deal with the performance prediction errors? The
prediction error handling mechanism in iGniter further
guarantees performance SLOs. In our experiments, such a
mechanism only triggers two times (i.e., two prediction
errors occur). To illustrate how it works, we take W1 co-
located with W5 and W11 on GPU5 as an example. As
depicted in Fig. 17, the P99 latency of W1 at the first second
is 15.6 ms which is higher than the latency SLO (i.e., 10 ms)
due to the prediction error. In the next 0.5 seconds, iGniter
collects the request latency data and judges whether it viola-
tes the SLO. If an SLO violation still occurs, iGniter switches
such an SLO-violated inference workload to the activated
shadow Triton process at the 1.5-th second. After that, the
P99 latency of W1 can be guaranteed within the SLO. As we
have pre-launched the shadow Triton process as elaborated

in Section 4.2, iGniter does not require spending 10 seconds
in launching a new Triton process as in GSLICEþ.

How can iGniter save the monetary cost? As the hourly mon-
etary cost is proportional to the number of provisioned
GPU instances, we simply compare the allocated GPU resour-
ces of iGniterwith that of GSLICEþ, FFDþ, and gpu-letsþ. As
shown in Fig. 18, we observe that the GPU resources allo-
cated by gpu-letsþ for each workload are larger or equal to
iGniter. This is mainly due to the following facts: First, tak-
ing W4 (i.e., App1 of ResNet-50) as an example, gpu-letsþ

provisions 60% of GPU resources (i.e., the most-efficient
amount of GPU resources) and then sets the batch size as 2
to maximize its throughput. In contrast, iGniter sets an
appropriate batch size as 4 and then provisions 32:5% of GPU
resources to just meet its performance SLOs. Second, gpu-
letsþ only allows two co-located inference workloads on a
GPU device, while iGniter allows multiple (more than 2)
workloads concurrently executed. Third, gpu-letsþ allows
only five choices (i.e., 20%, 40%, 50%, 60%, 80%) of GPU
resources allocated to inference workloads, while iGniter
can allocate workloads with an amount of GPU resources
with a fine-grained GPU allocation unit (i.e., 2:5%). For exam-
ple, gpu-letsþ and iGniter provisionW9with 40% and 37:5%
of GPU resources, respectively. In addition, though
GSLICEþ uses our workload placement plan, it provisions
more or equal amounts of GPU resources than iGniter for all
workloads except W12 which violates its latency SLO. This
is because GSLICEþ does not reduce its allocated GPU
resources, as long as an inference workload meets its perfor-
mance SLOs and the tuning threshold. FFDþ provisions less
or equal amounts of GPU resources than iGniter as it always
allocates the lower bound (rilower) of GPU resources to infer-
ence workloads.

Fig. 15. Comparison of the inference latency and request throughput of
W10 over time under the GSLICEþ and iGniter strategies.

Fig. 16. Comparison of the allocated GPU resources and batch sizes for
W10 over time under the GSLICEþ and iGniter strategies.

Fig. 17. P99 inference latency of W1 (i.e., App1 of AlexNet) over time
when iGniter handles SLO violations.

Fig. 18. Comparison of allocated GPU resources for the 12 workloads
(i.e., W1, � � � , W12) achieved by the gpu-letsþ, FFDþ, GSLICEþ, and
iGniter strategies.

XU ETAL.: IGNITER: INTERFERENCE-AWARE GPU RESOURCE PROVISIONING FOR PREDICTABLE DNN INFERENCE 823

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on February 05,2023 at 05:02:31 UTC from IEEE Xplore. Restrictions apply.

How can iGniter place inference workloads on GPUs? The infer-
ence workload placer elaborated in Section 4.2 in iGniter fur-
ther reduces the amount of allocated GPU resources. As
shown in Fig. 19, FFDþ places W2 (i.e., App2 of AlexNet)
onto GPU1 according to the lower bound of GPU resources
(i.e., rilower) which inevitably causes SLO violations due to
the overlooked performance interference. FFDþþ places
such a workload onto GPU5 with 15% of GPU resources
according to the first-fit GPU that still has an amount (i.e.,
rilower þ rijinter which is calculated by Algprithm 2) of GPU
resources. As the most-efficient amount of GPU resources
(i.e., rimax throughput) for App2 of AlexNet is 40%, gpu-letsþ

places W2 onto GPU2 which is selected as the best-fit GPU
device. In general, gpu-letsþ allocates more GPU resources
than the other strategies as it mainly focuses on improving
the inference throughput. In contrast, iGniter places W2

onto GPU6 with the least amount of GPU resources (7:5%)
while guaranteeing the latency SLOs of all workloads. This
is because iGniter greedily places the inference workload
onto the GPU with the least performance interference and
allocates GPU resources that just meet performance SLOs.

Can iGniter adapt to the heterogeneous cluster? To obtain
complementary insights, we extend our GPU cluster by
adding 20 g4dn.xlarge instances, each equipped with 1 NVI-
DIA T4 GPU card, 4 vCPUs, and 16 GB memory. After
obtaining the hardware-specific coefficients and a part of
workload-specific coefficients on the g4dn.xlarge instance,
Algprithm 1 can identify the appropriate GPU resource pro-
visioning plan as illustrated in Fig. 20. As the NVIDIA V100
GPU device is equipped with 2� GPU computing resources
and 3� memory bandwidth resources compared with the
NVIDIA T4 GPU device, iGniter provisions 15 g4dn.xlarge
instances (T4) while 6 p3.2xlarge instances (V100) for the 12

workloads, respectively. In particular, iGniter provisions 2þ
g4dn.xlarge instances for W7, W8, W10, and W12 to meet
their performance SLOs. Finally, as the hourly monetary
cost (i.e., $7:89) on g4dn.xlarge instances is much less than
that (i.e., $18:36) on p3.2xlarge instances, iGniter considers
g4dn.xlarge as the most cost-efficient type of instances and
it adopts the resource provisioning plan in Fig. 14 for serv-
ing the 12 inference workloads.

5.4 Runtime Overhead of iGniter

We evaluate the runtime overhead of iGniter in terms of the
profiling overhead of DNN inference workloads, and the
computation time and memory consumption of iGniter
resource provisioning strategy (i.e., Algprithm 1). Specifically,
we launch a p3.2xlarge EC2 instance to profile the workload-
specific coefficients only once for each inference workload. The
profiling time of AlexNet [23], ResNet-50 [24], VGG-19 [25],
and SSD [35] models are 231, 247, 240, and 237 seconds,
respectively. In addition, we profile the hardware-specific coef-
ficients with VGG-19 only once for a given GPU type and the
profiling time is merely 229 seconds. The experiment results
above show that the profiling overhead of inference work-
loads is within several (around 4) minutes, which is far less
than the runtime overhead of gpu-lets [18] (i.e., over several
hours) in our experiments.

After obtaining the performance model coefficients, we
proceed to run our iGniter strategy in Algprithm 1 on a
p3.2xlarge EC2 instance. The computation overhead and
memory consumption of iGniter are negligible, which are
merely 3.64 milliseconds and 53.17 MB, respectively. As the
number of workloads is increased to 1,000 shown in Fig. 21,
the computation overhead is still within 4.61 seconds and the
memory overhead is less than 55MB. This is because the com-
putation time and memory consumption of Algprithm 1 are
quadratic to and linear to the number ofDNN inferencework-
loads, respectively, as analyzed in Section 4.1. As a result, the
runtime overhead of our iGniter strategy can be acceptable in
practice.

6 RELATED WORK

Achieving Predictable DNN Inference on GPUs. As summa-
rized in Table 4, there have been a number of works on
guaranteeing DNN inference performance SLOs on GPUs.
In the scenario of disabling GPU sharing (i.e., a GPU serves
one DNN inference at a time), Clipper [16] proposes cach-
ing, adaptive batch size, and dynamic model selection

Fig. 21. Computation and memory overhead of iGniter by varying the
number of DNN inference workloads from 10 to 1,000.

Fig. 19. Comparison of the inference workload (i.e., App2 of AlexNet)
placement decisions achieved by the FFDþ, gpu-letsþ, FFDþþ (i.e.,
FFDþ using alloc gpus, Algprithm 2), and iGniter resource provisioning
strategies.

Fig. 20. GPU resource provisioning plans achieved by iGniter for the 12
workloads in a cluster of 15 g4dn.xlarge instances without any SLO vio-
lations, resulting in $7:89monetary cost per hour.

824 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 3, MARCH 2023

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on February 05,2023 at 05:02:31 UTC from IEEE Xplore. Restrictions apply.

techniques to achieve low-latency and high-throughput
DNN inference. BatchDVFS [37] combines adaptive batch-
ing with the DVFS technique to maximize the inference
request throughput while guaranteeing the power caps.

In the scenario of temporal sharing of GPUs, Nexus [9]
proposes batching-aware scheduling based on Clipper [16]
to improve the GPU utilization. Clockwork [12] designs
fine-grained request-level scheduling to order user requests
based on their latency SLOs. Morphling [38] utilizes meta-
learning to quickly configure the batch size, CPU cores,
GPU memory, GPU timeshare, and GPU type for each infer-
ence workload. While sharing the adaptive batching and
workload placement techniques with the prior works above,
iGniter aims to cost-efficiently guarantee the performance
SLOs based on GPU spatial sharing, instead of maximizing
the request throughput of inference workloads. To further
reduce the monetary cost of DNN inference, two more
recent works (i.e., Cocktail [11], INFaaS [17]) design
the heterogeneous instance/accelerator selection, resource
autoscaling, and dynamic model-variants selection techni-
ques for cost-effective resource provisioning. These techni-
ques above can be incorporated into iGniter to further save
the inference budget. In addition, our SM-level resource
scaling in iGniter (i.e., runit in Algorithm 2) is more fine-
grained than the device-level resource scaling in Cocktail and
INFaaS.

In the scenario of spatial sharing of GPUs, Scrooge [10] lev-
erages the CUDA streams and batching techniques to pack
DNN inference on VMs to ensure the performance SLOs of
media applications. Using the latest multi-instance GPU
(MIG) [41] featuredA100GPUs,MIG-serving [39] optimizes a
set of GPU partitions and DNN inference deployments to
meet performance SLOs. To further maximize the request
throughput, INFless [40] adopts batching and heterogeneous
CPU-GPU resources for DNN inference in the serverless plat-
form. GSLICE [13] and gpu-lets [18] separately adjust the batch
size and allocated GPU resources for inference workloads.
However, the prior works above are mostly oblivious to

performance interference and thus they tend to cause long-
tail latency due to the severe GPU resource contention. In con-
trast. iGniter proactively considers (i.e., minimizes) the perfor-
mance interference among co-located inference workloads
and jointly optimizes the GPU resource allocation and batch
size configuration.

Modeling Performance Interference in Clouds. There have
been prior works on modeling the performance interfer-
ence [42] and hardware heterogeneity [43] of cloud CPU
instances. For instance, VELTAIR [44] builds a simple linear
interferencemodel using L3 cachemiss rate and L3 access sta-
tistics. To particularly model the performance interference
among co-located VMs based on temporal sharing of GPUs, Xu
et al. [45] build a random forest regressionmodel with a set of
factors such as GPU/memory utilization and the average ker-
nel length. AsDNN training and inferenceworkloads become
prevailing in the cloud [46], Horus [47] leverages GPU utiliza-
tion to estimate the performance interference among co-
located DNN training jobs through fitting a quadratic func-
tion, while iGniter focuses onmodeling theDNN inference per-
formance using a set of easily-accessible GPU system and
workloadmetrics.

Different from the interference above caused by the con-
text switching of temporal sharing of GPUs, NVIDIA MPS
allows DNN inference to spatially share GPU resources. To
model the interference caused by GPU resource contention,
Prophet [48] characterizes the contention of GPU processing
elements and DRAM bandwidth [49] as well as PCIe band-
width in the defaultmode ofMPS [50]. Based on theMPSwith
limited GPU resources, gpu-lets [18] builds a linear regression
model using the L2 cache and DRAM bandwidth utilization
to predict the latency increases for only two inference work-
loads. However, it requires profiling a number (e.g., thou-
sands) of possible workload configurations, which brings
heavy runtime overhead. Different from the models above,
iGniter builds an analytical model to predict the interference
among multiple (i.e., more than 2) inference workloads by a
lightweight workload profiling with a limited number (i.e.,
11) of configurations. Moreover, our iGniter model compre-
hensively considers the severe contention of GPU scheduler,
L2 GPU cache space, and GPU power consumption among
co-located inference workloads.

7 CONCLUSION AND FUTURE WORK

This paper presents the design and implementation of iGniter,
an interference-aware GPU resource provisioning framework
for achieving predictable DNN inference in the cloud. By
leveraging the key system and workload metrics, we first
devise a lightweight analytical performance model to capture
the performance interference of inference workloads co-
located on GPUs. Such a performance model further guides
the design of a cost-efficient GPU resource provisioning strat-
egy in iGniter. It jointly optimizes the GPU resource allocation
and batch size configuration to greedily minimize the perfor-
mance interference of DNN inference workloads. Extensive
prototype experiments on Amazon EC2 demonstrate that
iGniter can guarantee the performance SLOs of cloud-based
DNN inference workloads, while saving themonetary cost by
up to 25% compared with the state-of-the-art resource provi-
sioning strategies.

TABLE 4
Comparison of Predictable DNN Inference Systems on GPUs

Strategies Interference Spatial Profiling Workload Batching

awareness sharing overhead placement

Clipper [16] ✕ ✕ N/A ✕ ✓

BatchDVFS [37] ✕ ✕ lightweight ✕ ✓

Nexus [9] ✕ ✕ lightweight ✓ ✓

Clockwork [12] ✕ ✕ lightweight ✓ ✓

Morphling [38] ✕ ✕ lightweight ✕ ✓

Cocktail [11] ✕ ✕ lightweight ✕ ✕

INFaaS [17] ✓ ✕ lightweight ✓ ✓

Scrooge [10] ✕ multiple heavy ✓ ✓

MIG-serving [39] ✕ multiple heavy ✓ ✓

INFless [40] ✕ multiple lightweight ✓ ✓

GSLICE [13] ✕ multiple N/A ✕ ✓

gpu-lets [18] ✓ 2 heavy ✓ ✓

iGniter ✓ multiple lightweight ✓ ✓

XU ETAL.: IGNITER: INTERFERENCE-AWARE GPU RESOURCE PROVISIONING FOR PREDICTABLE DNN INFERENCE 825

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on February 05,2023 at 05:02:31 UTC from IEEE Xplore. Restrictions apply.

We plan to extend iGniter in the following directions: (1)
provisioning DNN inference workloads with multiple types
of GPU hardware or accelerators, (2) allocating multiple GPU
instances to a DNN inference workload with an extremely
large request arrival rate, (3) negotiating the tradeoff between
minimizing the monetary cost and maximizing the perfor-
mance of DNN inference workloads, (4) deploying a dynamic
temporal and spatial GPU sharing strategy for time-varying
request arrival rates, and (5) examining the effectiveness of
iGniter in the mixed deployment scenario of DNN inference
and trainingworkloads.

REFERENCES

[1] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing
of deep neural networks: A tutorial and survey,” Proc. IEEE,
vol. 105, no. 12, pp. 2295–2329, Dec. 2017.

[2] P. Jain et al., “Dynamic space-time scheduling for GPU inference,”
in Proc. Int. Conf. Neural Inf. Process. Syst., 2018, pp. 1–8.

[3] NVIDIA. Intel Inference NVIDIAGPUs, May 2019. [Online]. Avail-
able: https://blogs.nvidia.com/blog/2019/05/21/intel-inference-
nvidia-gpus/

[4] G. Zhou et al., “Deep interest evolution network for click-through
rate prediction,” in Proc. Conf. Assoc. Advance. Artif. Intell., 2019,
pp. 5941–5948.

[5] NVIDIA, JD AI Video Inferencing, May 2018. [Online]. Available:
https://blogs.nvidia.com/blog/2018/02/13/jd-ai-video-
inferencing/

[6] E. Liberty et al., “Elastic machine learning algorithms in amazon
sagemaker,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2020,
pp. 731–737.

[7] Google Cloud, Vertex AI, Nov. 2021. [Online]. Available: https://
cloud.google.com/vertex-ai

[8] Omdia, NVIDIA Maintains Dominant Position In 2020 Market,
Aug. 2021. [Online]. Available: https://omdia.tech.informa.com/
pr/2021-aug/nvidia-maintains-dominant-position-in-2020-
market-for-ai-processors-for-cloud-and-data-center

[9] H. Shen et al., “Nexus: A GPU cluster engine for accelerating
DNN-based video analysis,” in Proc. ACM Symp. Operating Syst.
Princ., 2019, pp. 322–337.

[10] Y. Hu, R. Ghosh, and R. Govindan, “Scrooge: A cost-effective
deep learning inference system,” in Proc. ACM Symp. Cloud Com-
put., 2021, pp. 624–638.

[11] J. R. Gunasekaran, C. S. Mishra, P. Thinakaran, M. T. Kandemir,
and C. R. Das, “Cocktail: A multidimensional optimization for
model serving in cloud,” in Proc. USENIX Symp. Netw. Syst. Des.
Implementation, 2022, pp. 1–17.

[12] A. Gujarati et al., “Serving DNNs like clockwork: Performance
predictability from the bottom up,” in Proc. USENIX Symp. Operat-
ing Syst. Des. Implementation, 2020, pp. 443–462.

[13] A. Dhakal, S. G. Kulkarni, and K. K. Ramakrishnan, “GSLICE:
Controlled spatial sharing of GPUs for a scalable inference
platform,” in Proc. ACM Symp. Cloud Comput., 2020, pp. 492–506.

[14] NVIDIA, NVIDIA multi-process service, Jun. 2021. [Online].
Available: https://docs.nvidia.com/deploy/mps

[15] W. Zhang, Q. Chen, N. Zheng, W. Cui, K. Fu, and M. Guo,
“Towards QoS-awareness and improved utilization of spatial
multitasking GPUs,” IEEE Trans. Comput., vol. 71, no. 4, pp. 866–
879, Apr. 2021.

[16] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez,
and I. Stoica, “Clipper: A Low-Latency Online Prediction Serving
System,” in Proc. USENIX Symp. Netw. Syst. Des. Implementation,
2017, pp. 613–627.

[17] F. Romero, Q. Li, N. J. Yadwadkar, and C. Kozyrakis, “INFaaS:
Automated model-less inference serving,” in Proc. USENIX Annu.
Tech. Conf., 2021, pp. 397–411.

[18] S. Choi, S. Lee, Y. Kim, J. Park, Y. Kwon, and J. Huh, “Serving het-
erogeneous machine learning models on Multi-GPU servers with
spatio-temporal sharing,” in Proc. USENIX Annu. Tech. Conf.,
2022, pp. 199–216.

[19] F. Xu, F. Liu, H. Jin, and A. V. Vasilakos, “Managing performance
overhead of virtual machines in cloud computing: A survey, state
of the art, and future directions,” Proc. IEEE, vol. 102, no. 1,
pp. 11–31, Jan. 2014.

[20] NVIDIA, NVIDIA triton inference server, Nov. 2021. [Online].
Available: https://github.com/triton-inference-server/server

[21] S. Kim, S. Oh, and Y. Yi, “Minimizing GPU kernel launch over-
head in deep learning inference on mobile GPUs,” in Proc. Int.
Workshop Mobile Comput. Syst. Appl., 2021, pp. 57–63.

[22] Amazon Amazon elastic compute cloud (amazon EC2), Nov.
2021. [Online]. Available: https://aws.amazon.com/ec2/

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifi-
cation with deep convolutional neural networks,” Commun. ACM,
vol. 60, no. 6, pp. 84–90, 2017.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2016, pp. 770–778.

[25] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” in Proc. Int. Conf. Learn.
Representations, 2015, pp. 1–14.

[26] H. Vanholder, “Efficient inference with TensorRT,” in Proc. GPU
Technol. Conf., 2016, pp. 2–2.

[27] S. Jain, I. Baek, S. Wang, and R. Rajkumar, “Fractional GPUs: Soft-
ware-based compute and memory bandwidth reservation for
GPUs,” in Proc. IEEE Real-Time Embedded Technol. Appl. Symp.,
2019, pp. 29–41.

[28] R. Ge, R. Vogt, J. Majumder, A. Alam, M. Burtscher, and Z. Zong,
“Effects of dynamic voltage and frequency scaling on a K20
GPU,” in Proc. Int. Conf. Parallel Process., 2013, pp. 826–833.

[29] NVIDIA, NVIDIA Nsight systems, Nov. 2021. [Online]. Available:
https://developer.nvidia.com/nsight-systems

[30] NVIDIA, NVIDIA system management interface, May 2019.
[Online]. Available: https://blogs.nvidia.com/blog/2019/05/21/
intel-inference-nvidia-gpus/

[31] NVIDIA, NVIDIA Nsight compute, Nov. 2021. [Online]. Available:
https://docs.nvidia.com/nsight-compute/NsightCompute/index.
html

[32] H. Abdi et al., “The method of least squares,” Encyclopedia Meas.
Statist., vol. 1, pp. 530–532, 2007.

[33] D. S. Johnson, “Near-optimal bin packing algorithms,” Ph.D. dis-
sertation, Massachusetts Institute of Technology, Cambridge, MA,
USA, 1973.

[34] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A large-scale hierarchical image database,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2009, pp. 248–255.

[35] W. Liu et al., “SSD: Single shot multibox detector,” in Proc. Eur.
Conf. Comput. Vis., 2016, pp. 21–37.

[36] M. Everingham and J. Winn, “The pascal visual object classes chal-
lenge 2012 (VOC2012) development kit,” Tech. Rep., pp. 1–45, May
2012. [Online]. Available: http://host.robots.ox.ac.uk/pascal/
VOC/voc2012/devkit_doc.pdf

[37] S. M. Nabavinejad, S. Reda, andM. Ebrahimi, “Coordinated batch-
ing and DVFS for DNN inference on GPU accelerators,” IEEE
Trans. Parallel Distrib. Syst., vol. 33, no. 10, pp. 2496–2508, Oct. 2022.

[38] L. Wang et al., “Morphling: Fast, near-optimal auto-configuration
for cloud-native model serving,” in Proc. ACM Symp. Cloud Com-
put., 2021, pp. 639–653.

[39] C. Tan et al., “Serving DNN models with multi-instance GPUs: A
case of the reconfigurable machine scheduling problem,”
2021, arXiv:2109.11067.

[40] Y. Yang et al., “INFless: A native serverless system for low-
latency, high-throughput inference,” in Proc. ACM Int. Conf.
Archit. Support Program. Lang. Operating Syst., 2022, pp. 768–781.

[41] NVIDIA, NVIDIA multi-instance GPU user guide, Jun. 2021.
[Online]. Available: https://docs.nvidia.com/datacenter/tesla/
mig-user-guide/

[42] F. Xu, F. Liu, L. Liu, H. Jin, B. Li, and B. Li, “iAware: Making live
migration of virtual machines interference-aware in the cloud,”
IEEE Trans. Comput., vol. 63, no. 12, pp. 3012–3025, Dec. 2014.

[43] F. Xu, F. Liu, and H. Jin, “Heterogeneity and interference-aware vir-
tual machine provisioning for predictable performance in the
cloud,” IEEE Trans. Comput., vol. 65, no. 8, pp. 2470–2483, Aug. 2016.

[44] Z. Liu, J. Leng, Z. Zhang, Q. Chen, C. Li, and M. Guo,
“VELTAIR: Towards high-performance multi-tenant deep
learning services via adaptive compilation and scheduling,” in
Proc. ACM Int. Conf. Archit. Support Program. Lang. Operating
Syst., 2022, pp. 388–401.

[45] X. Xu, N. Zhang, M. Cui, M. He, and R. Surana, “Characterization
and prediction of performance interference on mediated pass
through GPUs for interference-aware scheduler,” in Proc. USENIX
Workshop Hot Top. Cloud Comput., 2019, pp. 1–8.

826 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 3, MARCH 2023

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on February 05,2023 at 05:02:31 UTC from IEEE Xplore. Restrictions apply.

[46] H. Zheng, F. Xu, L. Chen, Z. Zhou, and F. Liu, “Cynthia: Cost-effi-
cient cloud resource provisioning for predictable distributed deep
neural network training,” in Proc. Int. Conf. Parallel Process., 2019,
pp. 1–11.

[47] G. Yeung, D. Borowiec, R. Yang, A. Friday, R. Harper, and P. Gar-
raghan, “Horus: Interference-aware and prediction-based sched-
uling in deep learning systems,” IEEE Trans. Parallel Distrib. Syst.,
vol. 33, no. 1, pp. 88–100, Jan. 2022.

[48] Q. Chen, H. Yang, M. Guo, R. S. Kannan, J. Mars, and L. Tang,
“Prophet: Precise QoS prediction on non-preemptive accelerators
to improve utilization in warehouse-scale computers,” in Proc.
ACM Int. Conf. Archit. Support Program. Lang. Operating Syst., 2017,
pp. 17–32.

[49] W. Zhang et al., “Astraea: Towards QoS-aware and resource-effi-
cient multi-stage GPU services,” in Proc. ACM Int. Conf. Archit.
Support Program. Lang. Operating Syst., 2022, pp. 570–582.

[50] Q. Chen, H. Yang, J. Mars, and L. Tang, “Baymax: QoS awareness
and increased utilization for non-preemptive accelerators in ware-
house scale computers,” ACM SIGPLAN Notices, vol. 51, no. 4,
pp. 681–696, 2016.

Fei Xu (Member, IEEE) received the BS, ME, and
PhD degrees from the Huazhong University of Sci-
ence and Technology (HUST), Wuhan, China, in
2007, 2009, and 2014, respectively. He received
Outstanding Doctoral Dissertation Award in Hubei
province, China, and ACM Wuhan & Hubei Com-
puter Society Doctoral Dissertation Award in 2015.
He is currently an associate professor with the
School of Computer Science and Technology, East
China Normal University, Shanghai, China. His
research interests include cloud computing and
datacenter, virtualization technology, and distrib-
uted systems.

Jianian Xu received the BS degree in polymer
materials and engineering from the Qingdao Uni-
versity of Science and Technology in 2019. He is
currently working toward the master’s degree with
the School of Computer Science and Technology,
East China Normal University, Shanghai, China.
His research interests focus on cloud computing
and distributed machine learning systems.

Jiabin Chen received the BS degree in optoelec-
tronic information science and engineering from
the Harbin Institute of Technology, Weihai in 2019.
He is currently working toward the master’s degree
with the School of Computer Science and Technol-
ogy, East China Normal University, Shanghai,
China. His research interests focus on cloud com-
puting and distributedmachine learning systems.

Li Chen (Member, IEEE) received the BEng
degree from the Department of Computer Sci-
ence and Technology, Huazhong University of
Science and Technology, China, in 2012 and the
MASc degree from the Department of Electrical
and Computer Engineering, University of Toronto,
in 2014 and the PhD degree in computer science
and engineering from the Department of Electri-
cal and Computer Engineering, University of Tor-
onto, in 2018. She is currently an assistant
professor with the Department of Computer Sci-

ence, School of Computing and Informatics, University of Louisiana at
Lafayette, Lafayette, USA. Her research interests include big data ana-
lytics systems, cloud computing, datacenter networking, and resource
allocation.

Ruitao Shang received the BS degree in com-
puter Sscience from East China Normal Univer-
sity (ECNU) in 2020. She is currently working
toward the MS degree in computer science with
the School of Computer Science and Technology
at ECNU. Her current research interests focus on
cloud computing and distributed machine learn-
ing systems.

Zhi Zhou (Member, IEEE) received the BS, ME,
and PhD degrees from the School of Computer
Science and Technology at Huazhong University
of Science and Technology (HUST), Wuhan,
China, in 2012, 2014, and 2017, respectively. He
is currently an associate professor with the
School of Computer Science and Engineering at
Sun Yat-sen University, Guangzhou, China. In
2016, he was a visiting scholar with the University
of G€ottingen. He was nominated for the 2019
CCF Outstanding Doctoral Dissertation Award,

the sole recipient of the 2018 ACM Wuhan & Hubei Computer Society
Doctoral Dissertation Award, and a recipient of the Best Paper Award of
IEEE UIC 2018. His research interests include edge computing, cloud
computing, and distributed systems.

Fangming Liu (Senior Member, IEEE) received
the BEng degree from the Tsinghua University, Bei-
jing, and the PhD degree from the Hong Kong Uni-
versity of Science and Technology, Hong Kong. He
is currently a full professor with the Huazhong Uni-
versity of Science and Technology, Wuhan, China.
His research interests include cloud computing and
edge computing, datacenter and green computing,
SDN/NFV/5G and applied ML/AI. He received the
National Natural Science Fund (NSFC) for Excel-
lent Young Scholars, and the National Program

Special Support for Top-Notch Young Professionals. He is a recipient of the
Best Paper Award of IEEE/ACM IWQoS 2019, ACM e-Energy 2018 and
IEEE GLOBECOM 2011, the First Class Prize of Natural Science of Minis-
try of Education in China, as well as the Second Class Prize of National
Natural Science Award inChina.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

XU ETAL.: IGNITER: INTERFERENCE-AWARE GPU RESOURCE PROVISIONING FOR PREDICTABLE DNN INFERENCE 827

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on February 05,2023 at 05:02:31 UTC from IEEE Xplore. Restrictions apply.

